
In Silico Identification of Potential Inhibitors of the Main 
Protease of SARS-CoV-2 Using Combined Ligand-Based 
and Structure-Based Drug Design Approach

The recent eruption and ensuing pandemic of coronavi-
rus disease 2019 (COVID-19) caused by the new severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has presented unprecedented global public health and 
economic challenges. The disease was first detected in 
Wuhan, China, but has been identified in 212 countries 
and territories with 3,566,210 confirmed infected cases 
and 248,285 deaths worldwide as of May, 4, 2020. The 
World Health Organization (WHO) has estimated that the 
mortality rate of COVID-19 is 3.4%. In recent history, there 

have been 2 outbreaks of other coronavirus diseases, the 
SARS-CoV epidemic of 2003 that led to 1000 deaths[1] and 
the Middle Eastern respiratory syndrome (MERS-CoV) out-
break of 2012, which claimed 862 lives.[2] The WHO declared 
the current worldwide COVID-19 outbreak an international 
public health emergency. At the time of writing, it contin-
ues to spread beyond control. The SARS-CoV-2 is highly ho-
mologous to SARS-CoV and the fatality rate of SARS-CoV 
was 10%.[3, 4] SARS-CoV-2 is a single-strand positive-sense 
RNA virus of the Coronavirinae subfamily, Coronaviridae 
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family, Nidovirales order. Extensive research of human 
coronaviruses has been performed by numerous research-
ers, who have identified 4 Coronavirinae genera (α, β, γ, and 
δ).[5, 6] The human coronaviruses HCoV-HKU1, HCoV–OC43, 
MERS-CoV, SARS-CoV, and SARS-CoV-2 are members of the 
betacoronavirus genus.[7] A detailed classification of human 
coronavirus is illustrated in Figure S1. The new SARS-CoV-2 
has a 79.7% and 91.02% genomic similarity with SARS-CoV 
and the Malayan pangolin coronavirus (SARS-CoV-2 like), 
respectively.[8] It also has 96% and 89.6% identity with the 
envelope and nucleocapsid protein of SARS-CoV, respec-
tively.[7] Similarities between SARS-CoV and SARS-CoV-2, 
such as the replication mechanism, may be useful to inhibit 
the SARS-CoV-2 infection cycle. 

Potential antiviral therapies can be grouped in 2 catego-
ries, namely improving the human immune system, in 
which interferon plays a vital function, and targeting virus 
replication through blocking the signal pathways. Poten-
tial alternatives to control or prevent COVID-19 infection 
include vaccines, interferon therapies, small molecule 
drugs, peptide or oligonucleotide-based therapies, and 
monoclonal antibodies, as shown in Figure S2. Of several 
options to prevent COVID-19 disease, one of the impor-
tant is the use of small-molecule drugs.[9, 10] In the present 
exigent situation, given that there is no specific drug or 
vaccine yet approved for COVID-19, existing drug mol-
ecules are being analyzed using systematic bioinformatic 
tools as a potential means to block the replication cycle 
of SARS-CoV-2. Researchers have examined several exist-
ing drug molecules and natural compounds on the basis 
of structure-based virtual screening (VS) of various data-
banks.[5, 9-14] In the present study, SARS-CoV-2 inhibitors 
were explored using resources from DrugBank (5.0; Wis-
hart et al.) using a ligand-based and a structure-based VS 
virtual screening approach. For the ligand-based analysis, 
22 SARS-CoV inhibitors were used to generate common 
pharmacophores for virtual screening. 

The SARS-CoV genome contains 2 open reading frames 
(ORF1a and ORF1b) of viral replicase genes which encode 
2 large, overlapping polyproteins, pp1a and pp1ab. These 
polyproteins produce a number of nonstructural proteins 
(Nsps) through proteolytic cleavage. The SARS-CoV en-
codes 2 proteases: chymotrypsin-like protease (3CLpro) and 
papain-like protease (PLpro). 3CLpro is also the main pro-
tease (Mpro); it is cleaved automatically from polyproteins 
and then regulates the downstream proteolytic cleavage 
reaction at 11 polyprotein sites and releases Nsp4 to Nsp16, 
which are crucial for virus replication and pathogenesis.[7, 5, 15, 

16] Liu et al.[9] suggested that the Mpro is a potential drug tar-
get to inhibit SARS-CoV-2 replication due to its highly con-
served sequence and available 3-dimensional (3D) structure. 

The structural organizations of the SARS-CoV genomes are 
displayed in Figure S3. The Mpro is a key protein for the pro-
teolytic maturation of virus Nsps. The chymotrypsin-like pro-
tease of SARS-CoV-2 was selected as the target protein for 
the structure-based method VS. Various 3CLpro inhibitors of 
SARS-CoV-2 have been reported by several research groups 
to be potentially effective treatment options for COVID-19 
based on a structure-based approach.[17–20] The present work 
used the best 3CLpro hits from DrugBank for in vitro study.

Methods

Collection of Materials
The high resolution (2.16 Å) X-ray crystal structure of the 
SARS-CoV-2 Mpro or 3CLpro (PDB ID: 6LU7), consisting of 
312 amino acid residues complexed with a peptide-like in-
hibitor (N3), was retrieved from the Research Collaboratory 
for Structural Bioinformatics Protein DataBank.[21] The initial 
genomic sequences analyses of SARS-CoV-2 indicate that 
it has a high level of sequence similarity with SARS-CoV. 
In all, 22 known SARS-CoV inhibitors were collected based 
on the literature[4] and used to build a common pharma-
cophore. The structures of the diverse SARS-CoV inhibitors 
are shown in Figure 1. The DrugBank database was used 

Figure 1. The 22 structurally diverse severe acute respiratory syn-
drome coronavirus 2 inhibitors used to generate common pharma-
cophore hypotheses. 
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for the ligand-based and structure-based VS.[22] The Mpro 
inhibitor remdesivir was also retrieved in the protein data 
bank (pdb) file format to compare with selected inhibitors. 
Windows 10 (Microsoft Corp., Redmond, WA, USA) and a 
64-bit, Core 2 Duo CPU (Intel Corp., Santa Clara, CA, USA) 
microprocessor were used to perform the computations.

Ligand Preparation 
All of the structures of the SARS-CoV inhibitors were 
drawn using ChemDraw Professional 15.1 (PerkinElmer 
Inc., Waltham, MA, USA) and saved in structure-data file 
(sdf ) format. These inhibitors and DrugBank molecules 
were geometrically refined using the Schrödinger Ligprep 
module (Release 2020; Schrödinger LLC, New York, NY, 
USA).[23] During ligand preparation, the 2D structures were 
converted to the corresponding 3D structure, and added 
hydrogens and energy of ligands were minimized using 
the OPLS_2003 force field (Schrödinger LLC, New York, NY, 
USA) until it reached a root mean square deviation (RMSD) 
of 0.01 Å. Ligprep generates a single isomer with the origi-
nal chiralities of each input. In order to perform molecular 
docking study using AutoDock 4.2 software (The Scripps 
Research Institute, La Jolla, CA, USA)[35] the selected mol-
ecules were converted to pdb format and then loaded in 
AutoDockTools 1.5.6 for conversion to pdbqt format (pdb 
with partial charges and AutoDock atom types). 

Protein Preparation, Grid Generation and Docking 
Validation
The crystal structure of the Mpro (PDB ID: 6LU7) was used 
to prepare the protein using Protein Preparation Wizard 
(Schrödinger LLC, New York, NY, USA).[24] The protein struc-
ture was processed by assigning the bond orders, adding 
hydrogen, creating zero-order bonds to metals, filling side 
chains, and adding missing loops using the Prime protein 
structure prediction program (Schrödinger LLC, New York, 
NY, USA).[25-27] Finally, the protein was minimized using heavy 
atoms to RMSD 0.30 Å with OPLS3 force field. The receptor 
grid was prepared by selecting the coligand ligand of length 
15Å from the center of the coligand. The coligand was split 
from its crystal structure and then docked with the prepared 
receptor grid. The best docked pose of the coligand was 
then superimposed on the original crystallographic bound 
conformation Figure S6 and the RMSD was calculated. The 
measured RMSD value was 2.0147Å. An RMSD value of <3Å 
is considered acceptable; therefore, the reproducibility of 
the docking protocol was good. In order to perform the mo-
lecular docking study using AutoDock 4.2, the protein was 
loaded in AutoDock Tools 1.5.6 and water molecules were 
removed, polar hydrogens bonded to heteroatoms were 
added, and the result was saved in pdbqt format. 

Generation of Common Pharmacophore Hypothesis
The Phase[28-30] module (Release 2020-1; Schrödinger LLC, 
New York, NY, USA) was used to create common pharma-
cophores. Phase contains 6 in-built pharmacophore fea-
tures: hydrogen bond acceptor (A), hydrogen bond donor 
(D), hydrophobic group (H), negatively charged group (N), 
positively charged group (P), and aromatic ring (R). The 22 
prepared SARS-CoV inhibitors were imported and common 
pharmacophore hypotheses were created by selecting mul-
tiple active ligands and using a minimum (Table 1) of 4 phar-
macophore features. The best pharmacophore hypotheses 
are shown in Figure 2.

Ligand Based Virtual Screening 
The best pharmacophore, HHRR.1, was used to search 
DrugBank[22] with VS to retrieve SARS–CoV pharmaco-
phore-matched inhibitors. The VS workflow used to iden-
tify SARS–CoV pharmacophore-matched inhibitors is pre-
sented in Figure 3. The database compounds matching at 

Table 1. Generated pharmacophoe hypothesis from 22 SARS-CoV 
inhibitors

HypoID Survival Site Vector Volume Select Matches

HHRR_1 4.6674 0.5523 0.8589 0.5774 1.5326 15
HHRR_2 4.6390 0.5503 0.8555 0.5665 1.5527 13
HHRR_3 4.4058 0.4738 0.798 0.4202 1.5377 14
HHRR_4 4.3177 0.5575 0.6887 0.4032 1.5221 14
HHRR_5 4.2837 0.4788 0.7121 0.3945 1.5222 15
HHRR_6 4.2764 0.5704 0.6129 0.4088 1.5381 14

Figure 2. The Phase-generated best pharmacophore hypothesis, 
HHRR.1, illustrating hydrophobic (H2, H4: green) and aromatic rings 
(R5, R6: orange). In all, 22 known severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) inhibitors were used for this model.
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least 4 pharmacophoric features were identified and 1000 
hits were kept in reserve for structure-based VS. 

Structure Based Virtual Screening 
The output pharmacophore-matched hits were utilized for 
VS with Glide.[31-33] The input hits were filtered with QikProp 
(Schrödinger LLC, New York, NY, USA)[34] and the Lipinski 
rule, and reactive functionalities were removed. The filtered 
hits were used as an input hits for high-throughput VS and 
10% of the best output hits were subjected to standard 
precision (SP) docking. Finally, 10% of the best SP outputs 
were used for extra precision (XP) docking. The VS work-
flow of structure-based VS is shown in Figure 3.

Molecular Dynamics Simulation (MD)
Molecular dynamics (MD) simulations to predict the stabil-
ity of the protein-ligand complex and interaction analysis 
were performed using Desmond (Schrödinger LLC, D.E. 
Shaw Research, NY, NY, USA).[35] The best 3 ligand- Mpro 
complexes were placed in the orthorhombic box with a 
buffer distance of 10 Å in order to add water and TIP3P was 
used to generate water models.[36] The temperature and 
pressure of the system was kept at 300.15 K and 1.01325 
bar, respectively. The cut-off for the van der Waals radius 
and electrostatic interactions was 9.0 Å and the time step 
was 2.0 fs. The 50 ns root-mean-square fluctuation (RMSF) 
MD simulations for the 3 complexes were performed with 
the isothermal-isobaric (NPT) ensemble using OPLS3e 
force field. The RMSD, RMSF, and interaction diagram were 
generated using the Maestro 12 interface (Schrödinger 
LLC, New York, NY, USA). The methods of simulation were 
conducted as described by Yoshino et al.[37]

Prediction of Ki Values of Selected Hits
The receptor was again prepared using AutoDock Tools 

1.5.6 for docking with AutoDock 4.2. During the prepara-
tion, the water molecules were removed, and polar hydro-
gens were added, followed by computation of the Gastei-
ger charge and adding the Kollman charge. The best hits 
identified on the basis of the fitness score and XP Glide 
score were used to predict Ki values using AutoDock 4.2.[38]

Results and Discussion
A set of 6 pharmacophore hypotheses; HHRR_1, HHRR_2, 
HHRR_3, HHRR_4, HHRR_5, and HHRR_6, were generated 
from 22 SARS-CoV inhibitors. The survival score of HHRR_1 
was the highest, 4.6674, which matched 15 SARS-CoV 
known inhibitors nicely as shown in Figure S4. The finding 
that of 22 SARS-CoV inhibitors, 15 fit with the best phar-
macophore, indicates the quality of the model. DrugBank 
contains 10,156 compounds and the best 1000 pharma-
cophore-matched hits were subjected to structure-based 
VS. During VS, the hits were filtered using QikProp and the 
Lipinski rule, and reactive functional group compounds 
were removed. The best hits: DB06829, DB07456, DB13592, 
DB06834, DB11903, and DB03777, were selected based on 
a high XP Glide score. The 2D structures of these hits are 
shown in Figure 4. The range of fitness score of the selected 
hits was 1.816-1.459, and the range of the XP Glide score 
was -8.254 to -6.608. The fitness score, XP Glide score, and 
interacting active site amino acid residues and distance are 
shown in Table 2. 

The fitness score of DB06829 was 1.753 and its XP Glide 
score was the highest, -8.254. This hit interacted with 2 key 
interacting amino acid residues, HIE-41 (2.10 Å) and CYS-
145 (2.37 Å). The other interacting amino acid residues 
were HIS-163 (1.91Å) and ARG-188 (2.05Å). The 2D protein-
ligand interaction (A), 3D protein-ligand interaction (B), 
pharmacophore match (C), and position in the active site 
of DB06829 are shown in Figure 5a.

Figure 3. The virtual screening workflow to identify SARS-CoV-2 in-
hibitors. HTVS: High-throughput virtual screening; SP: Standard pre-
cision; VS: Virtual screening; XP: Extra precision.

Figure 4. Selected severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) inhibitors with DrugBank ID, fitness with pharmacoph-
ore HHRR.1, and extra precision (XP) Glide score.
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The fitness score of DB07456 was 1.816 and the XP Glide 
score was the next highest at -8.167. This hit also interacted 
with 2 key amino acid residues of the SARS-CoV-2 Mpro, 
HIE-41 (2, π-π) and CYS-145 (2.46Å). The other interacting 
amino acid residue was LEU-141 (2.35Å). The 2D protein-
ligand interaction (A), 3D protein-ligand interaction (B), 
pharmacophore match (C), and position in the active site 
of DB07456 are shown in Figure 5b.

The fitness score of DB13592 was 1.707 and the XP Glide 
score was -7.037. This hit interacted with HIE-41(2.36Å), 
SER-144 (2.23Å), and CYS-145 (2.39Å). The 2D protein-
ligand interaction (A), 3D protein-ligand interaction (B), 
pharmacophore-match structure (C), and position in the 
active site of DB06834 are shown in Figure 5c.

The fitness score of compound DB06834 was 1.573 and its 
XP glide score was –6.814. This hit interacts with active site 
amino acid residues were HIE-41(two, π-π), HIS-163 (2.03Å). 
The 2D protein-ligand interaction (A), 3D protein-ligand in-

Table 2. Fitness score, XP Glide Score and different type of interactions

Drug Bank ID Fitness XP GScore Interacting active site amino acid residues with interacting distance (Å)

DB06829 1.753 -8.254 HIE-41(п-п), GLY-143 (2.68), SER-144 (2.71), CYS-145 (2.58), GLU-166 (1.75), ARG-188 (2.03)
DB07456 1.816 -8.167 HIE-41 (two π-π), LEU-141 (2.35), CYS-145 (2.46)
DB13592 1.707 -7.037 HIE-41(2.36), SER-144 (2.23), CYS-145 (2.39)
DB06834 1.573 -6.814 HIE-41 (two, π-π), HIS-163 (2.03).
DB11903 1.459 -6.748 GLY-143 (2.19), GLN-189 (2.16)
DB03777 1.778 -6.608 HIE-41 (three π-π), SER-144 (2.42)
Remdesivir - -8.061 HIE-41 (2.13), HIS-164 (1.98), GLU-166 (2.47), THR-190 (1.98)

Figure 5a. Docking poses of compound DB06829 (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site.

a

c

b

d

Figure 5b. Docking poses of compound DB07456 (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site.

a

c
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Figure 5c. Docking poses of compound DB13592A (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site.
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teraction (B), pharmacophore-match structure (C) and po-
sition in the active site of DB06834 are shown in Figure 5d.

The fitness score of DB11903 was 1.459 and the XP Glide 
score was -6.748. This hit interacted with GLY-143 (2.19Å) 
and GLN-189 (2.16Å). The 2D protein-ligand interactions 
(A), 3D protein-ligand interaction (B), pharmacophore-
match structure (C), and positions in the active site of 
DB11903 are shown in Figure 5e.

The fitness score of DB03777 was 1.778 and the XP Glide 
score was -6.608. This hit interacted with active site amino 
acids HIE-41 (3, π-π) and SER-144 (2.42 Å). The 2D protein-
ligand interaction (A), 3D protein-ligand interaction (B), 
pharmacophore-matched structure (C), and position in the 
active site of DB03777 are shown in Figure 5f.

The coronavirus has more than a dozen proteins for vi-
ral entry and replication, including a papain-like protease 
(PLpro), a 3-chymotrypsin-like protease (3CLpro), an RNA-
dependent RNA polymerase (RdRp), and a spike protein. 
SARS-3CLpro is a cysteine protease crucial to viral repli-
cation in the infection cycle.[39] Here, we targeted SARS-
CoV-2 3CLpro (6LU7) to identify potential inhibitors. All 
6 hits: DB06829, DB07456, DB07458, DB13592, DB06834, 
DB11903, and DB03777, had a common pharmacophore 
with SARS-CoV and good binding affinity with the active 
site of the Mpro. The active site of the 3CLpro has a Cys-
His catalytic dyad (CYS-145 and HIS-41).[40] There was a 
covalent interaction between CYS-145 and the coligand 
(N3) in the original crystal structure of 6LU7 (Fig. S5). The 
interactions of remdesivir, an important SARS-CoV-2 on-

going clinical trial inhibitor,[41] were HIE-41, HIS-164, GLU-
160, and THR-198. 

Remdesivir also interacted with HIE-41, one of the impor-
tant residues (Fig. S7). Therefore, HIE-41 and CYS-145 were 
crucial target amino acid residues for inhibition. Three se-
lected hits, DB06829, DB07456, and DB13592, had close 
nonbonding interactions with CYS-145. The hits DB06829, 
DB07456, DB13592, DB06834, and DB03777 had close 

Figure 5d. Docking poses of compound DB06834 (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site.
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Figure 5e. Docking poses of compound DB11903 (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site
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Figure 5f. Docking poses of compound DB03777A (a) 2D ligand in-
teraction diagram of hydrogen bond donor-hydrogen bond acceptor 
(purple line) and π-π stacking (green line); (b) 3D ligand interactions of 
hydrogen bond donor-hydrogen bond acceptor (purple dotted line) 
and π-π stacking with distance (light blue dotted line); (c) Pharmaco-
phore-match structure; (d) Position of selected hits in the active site

a

c
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d
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nonbonding interactions with HIS-41. The hits DB06829, 
DB07456, and DB13592 interacted with both CYS-145 and 
HIS-41. The hit DB06829 showed 1 π-π interaction and 3 
closed, H-bond donor-acceptor interactions with an inter-
acting distance of <3.0 Å. The hit DB07456 showed 2 π-π 
interactions, and 4 H-bond donor-acceptor interactions. 
Hit DB13592 demonstrated 3 H-bond donor-acceptor in-
teractions from a close distance. The hits DB06834 and 
DB11903 revealed 2 H-bond donor-acceptor interactions 
at a distance of <3.0Å. All of the selected hits had a com-
mon pharmacophore with SARS-CoV, good binding affin-
ity, and were well packed inside the active site pockets of 
the SARS-CoV-2 Mpro. The targets of all of the inhibitors are 
listed in Table S1. 

The binding energy values of the selected hits B06829, 
DB07456, DB13592, DB06834, DB11903, DB03777, and rem-
desivir predicted by AutoDock were -8.22, -9.55, -6.04, -9.10, 
-7.89, -9.67, and -9.05, respectively. The predicted Ki values of 
B06829, DB07456, DB13592, DB06834, DB11903, DB03777, 
and remdesivir were 0.9400, 0.1006, 37.300, 0.2148, 1.6500, 
0.0817, and 0.2334, respectively, as illustrated in Table 3. The 
binding energy and Ki values of DB07456, DB06834, and 
DB03777 were greater than those of remdesivir. DB07456 
interacted with both CYS-145 and HIS-41; its XP Glide score 
was the second greatest, and its Ki value was 0.1006. There-
fore, the hit DB07456 may be the best SARS-CoV-2 protease 
inhibitor. On the basis of fitness score, XP Glide score, pre-
dicted Ki values, interacting amino acid residues, and com-
parison with remdesivir, the 3 best hits, DB06829, DB07456, 
and DB13592, were selected for 50 ns MD simulation.

Overall information about the stability of the protein back-
bone after the formation of a protein-ligand complex can be 
analyzed according to the RMSD parameters. MD simulation 
of both apoprotein and the 3 best Mpro-ligand complex hits 
obtained from VS were monitored and analyzed for 50 ns to 
understand the dynamic behavior and stability of the pro-
tein-ligand complexes. The RMSD of the apoprotein and pro-
tein-ligand complexes of DB07456, DB06829, and DB13592 
are shown in Figure 6. Important MD parameters, such as 

RMSD, RMSF, 2D-ligand-protein interaction diagram, and a 
timeline representation of interactions of the ligand with 
different active site amino acid residues, were calculated 
from the 50 ns MD trajectory. The protein-ligand complexes 
of DB07456, DB06829, and DB13592 exhibited an average 
RMSD value of 1.90 Å, 1.95 Å, and 1.68 Å, respectively. The 
RMSD of DB13592 was similar to the RMSD value of the apo-
protein (1.68 Å). The average RMSD value of the ligand-Mpro 
complexes of compounds DB07456, DB06829, and DB13592 
and the ligand-free protein are given in Table 4. The RMSD 
of the DB07456-Mpro system gradually increased for 7 ns, 
after which the value was lower than the RMSD of the apo-
protein. At 16-25 ns, the RMSD value was slightly higher 
than the apoprotein RMSD. After that, the RMSD value was 
less than that of the apoprotein RMSD for the remainder of 
the simulation. The RMSD of the DB06829-Mpro system was 
similar to the apoprotein RMSD, but after 25 ns, the RMSD 
value was greater than the apoprotein RMSD. The RMSD of 
the DB13592-Mpro system was greater for the initial 15 ns, 
and then the value was very close to that of the apoprotein 
RMSD value. The lower value of RMSD of DB07456 after 15 
ns and the RMSD value of DB13592 were very close to that of 
the apoprotein throughout the 50 ns MD simulation, which 

Table 3. The binding energy and predicted Ki values of selected 
inhibitors using Autodock 4.2

Drug Bank ID Binding Energy Predicted Ki (μM)

DB06829 -8.22 0.9378
DB07456 -9.55 0.1006
DB13592 -6.04 37.300
DB06834 -9.1 0.2148
DB11903 -7.89 1.6500
DB03777 -9.67 0.0817
Remdesivir -9.05 0.2334

Figure 6. Root mean square deviation (RMSD) plot of apoprotein 
[main protease (Mpro), black], DB07456-Mpro complex (green), 
DB06829-Mpro complex (red), and DB13592-Mpro complex (blue) 
during 50 ns molecular dynamics simulation.

Table 4. The average RMSD and RMSF values of 50 ns MD 
simulations

Ligand No Average RMSD (Å) Average RMSF (Å)

Apo-protein (6lu7) 1.68 1.80
DB07456 1.90 1.25
DB06829 1.95 1.80
DB13592 1.68 1.35
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indicates the high stability of the protein-ligand complex-
es. Therefore, the RMSD of the Mpro-DB07456 and Mpro-
B13592 systems might indicate that they probably did not 
undergo significant conformational changes during the MD 
simulation. The acceptable range for an RMSD value is <3.0 
Å;[42] therefore, all 3 protein-ligand complexes were within 
the acceptable range.

The average RMSF value of the apoprotein was 1.80 Å and 
the average RMSF value of DB07456 and DB13592 was 1.25Å 
and 1.35Å, respectively, which was less than that of the apo-
protein. The RMSF value of DB06829 was 1.80 Å, which was 
similar to that of the apoprotein. The average RMSF values 
of the protein-ligand complexes of DB07456, DB13592, 
DB06829, and the apoprotein are shown in Figure 7 and 
Table 4. As seen in Figure 7, it is clear that there were no sig-
nificant fluctuations of amino acid residues after binding in 
the active site. The greater RMSF values suggest that the pro-
tein structure is more flexible. The marginal flexibility of the 
protein-ligand system resulted in lower RMSF values.

The active site amino acid residues of the Mpro contribut-
ing to binding interactions with DB07456 were HIS-41 (π-
π), THR-26 (hydrogen bond acceptor), ASN-142 (hydrogen 
bond acceptor), and GLU-166 (water bridge H-bond) pro-
duced 54%, 91%, 48%, and 44%, respectively. The interac-
tion of DB06829 with HIS-41 yielded 44% and DB13592 with 

THR-190 resulted in 34%. The DB07456-Mpro, DB06829-
Mpro, and DB13592-Mpro interaction patterns observed 
during the 50 ns MD simulations are shown in Figure S8. 
The contacts formed in the DB07456-Mpro complex over 
the course of the simulation were THR-26, HIS-41, ASN-142, 
and GLU-166. The contacts made by DB06829 with apo-
protein the Mpro residues were THR-26, HIS-41, ASN-142, 
GLY-143, GLU-166, ARG-188, and THR-190. The DB13592 
hit contacts with Mpro residues were HIS-41, MET-49, GLU-
166, and GLN-189. All of the contacts formed by DB07456, 
DB06829, and DB13592 are presented in the top and bot-
tom panels in Figure 8, illustrating how the residues inter-
acted with the ligand in each trajectory frame during the 
simulation time. Wang[43] proposed that 1 hot spot residue, 
HIS-41, in the Mpro is a conserved residue across many 
viruses, including SARS-CoV, SARS-CoV-2, MERS-CoV, and 
hepatitis C virus (HCV). The selected hits DB07456 and 
DB06829 also showed fair interactions with HIS-41. It was 
observed that DB07456 and DB13592 had stable binding 
affinity throughout the MD simulation.

Conclusion

In the emergency situation of a COVID-19 pandemic, re-
purposing existing drugs may be helpful in the effort to 

Figure 7. Root mean square fluctuation (RMSF) plot of apoprotein [main protease (Mpro)] residues, DB07456-Mpro complex, DB06829-Mpro 
complex, and DB13592-Mpro complex. Green line represents the binding site interaction with compound 16.
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combat the disease. In-silico study resulted in 6 hits with fit-
ness to a common pharmacophore of SARS-CoV inhibitors, 
well-positioned in the pockets, and good binding affinity 
with the Mpro of SARS-CoV-2. The DrugBank  identifiers 
of these hits are DB06829, DB07456, DB07458, DB13592, 
DB06834, DB11903, and DB03777. The binding energy val-
ues of DB07456, DB06834, and DB03777 were greater than 
that of remdesivir, and their corresponding Ki values were 
also favorable compared with remdesivir. The inhibitors of 
DB07456 showed good binding affinity with the Mpro pre-
dicted by the software. This molecule also interacted with 
the crucial amino acid residues HIS-41 and CYS-145. The 50 
ns MD simulation study of the 3 best hits revealed DB07456 
and DB13592 as potential SARS-CoV-2 Mpro inhibitors. 
These are commercially available and therefore, these hits 
may be useful to the scientific community for further in vi-
tro and in vivo study to combat SARS-CoV-2. The VS stud-
ies performed thus far by different groups were based on 
the structure-based method only, but in this study, we 

employed pharmacophore-based VS as well as structure-
based VS, and a MD simulation study, which may eliminate 
false-positive results.
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Figure S1. Classification of different human coronaviruses (HCoVs), 
severe acute respiratory syndrome (SARS-CoV), and Middle East Re-
spiratory syndrome (MERS-CoV).[1´, 2´]

Figure S2. Different strategic options to prevent coronavirus 2019. [3´]

Figure S3. Summary of protein organization encoded by the severe 
acute respiratory syndrome genome.
3CLpro: Chymotrypsin-like protease; ADP-r-phosphatase: Adenosine diphos-
phate ribose-1-phosphatase; AMDRMT: S-adenosylmethionine-dependent 
ribose 2’-O-methyltransferase; Mpro: Main protease; Nsps: Nonstructural 
proteins; ORF: Open reading frame; pp1a and pp1ab: Polyproteins 1a & 1ab; 
PLpro: Papain-like cysteine protease; RdRP: RNA-dependent RNA-polymerase; 
RT: Replicase-transcriptase.[4´]

Figure S4. The 15 pharmacophore-matched severe acute respiratory 
syndrome (SARS-CoV) inhibitors.

Green: Hydrophobic; Ring aromatic: Orange.
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Figure S5. The original crystallographic-bound pose of carbon 
monoxide (CO) ligand (N3) of severe acute respiratory syndrome 2 
(SARS-CoV-2) main protease protein (PDB ID: 6LU7). (a) 2D ligand in-
teraction, (b) 3D interaction diagram. The CO ligand is light blue. The 
covalent bond with CYS-145 was broken before taking the image.

b

a

Figure S6. The best docked pose of the carbon monoxide (CO) ligand 
(light blue) superimposed on the original crystallographic-bound 
conformation (green).

Figure S7. The 3D ligand interaction diagram of remdesivir with se-
vere acute respiratory syndrome 2 (SARS-CoV-2) main protease pro-
tein (PDB ID: 6LU7). Purple dotted line indicates H-bond donor-ac-
ceptor interactions and distance.

Figure S8. The contacts between DB07456, DB06829, and DB13592 
and amino acid residues during molecular dynamics simulation.
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Table S1. The existing targets of selected inhibitors

Compound ID Target protein 

DB06829 Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates  
 dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EI.
DB07456 Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of  
 protein kinases. Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB...
DB13592 Cytochromes P450 are a group of heme-thiolatemonooxygenases. In liver microsomes, this enzyme is involved in an  
 NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un...
DB06834 Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors  
 including classical immunoreceptors like the B-cell receptor (BCR). Regulates seve...
DB11903  This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.
DB03777 Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of  
 protein kinases. Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB...


